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INTRODUCTION 
 
Low Earth Orbit (LEO) missions provide a unique means of gathering information about many of Earth’s aspects 
such as climate, atmosphere, and gravitational field.  Among the greatest challenges of LEO missions are designing, 
predicting, and maintaining the spacecraft orbit.  The predominant perturbative forces acting on a spacecraft in LEO 
are J2 and higher order gravitational components, the effects of which are fairly easy to predict, and atmospheric 
drag, which causes the greatest uncertainty in predicting spacecraft ephemeris.1  The continuously varying 
atmospheric drag requires increased spacecraft tracking in order to accurately predict spacecraft location.  In 
addition, periodic propulsive maneuvers typically must be planned and performed to counteract the effects of drag 
on the spacecraft orbit.  If the effects of drag could be continuously and autonomously counteracted, the uncertainty 
in ephemeris due to atmospheric drag would essentially be eliminated from the spacecraft dynamics.   
 
One method of autonomous drag compensation that has been implemented on some missions is drag-free control.  
Drag-free control of a spacecraft was initially proposed in the 1960’s and is discussed extensively by Lange.2  His 
drag-free control architecture consists of a free-floating proof mass enclosed within a spacecraft, isolating it from 
external disturbance forces such as atmospheric drag and solar radiation pressure.  Under ideal conditions, internal 
disturbance forces can be ignored or mitigated, and the orbit of the proof mass depends only on gravitational forces.  
A sensor associated with the proof mass senses the movement of the spacecraft relative to the proof mass.  Using the 
sensor measurements, the spacecraft is forced to follow the orbit of the proof mass by using low thrust propulsion, 
thus counteracting any non-gravitational disturbance forces.  If the non-gravitational disturbance forces are 
successfully removed, the spacecraft’s orbit will be affected only by well-known gravitational forces and will thus 
be easier to predict.  
 
With the elimination of drag, the dominant perturbations acting on a LEO spacecraft are higher order gravitational 
components.  The Earth has a bulge at the equator, is slightly pear shaped, and has a slight flattening of the poles.3 
This asphericity, in addition to asymmetric density, contributes to a non-uniform geopotential function, the gradient 
of which yields the total gravitational acceleration of the spacecraft.  In LEO, the dominant gravitational 
perturbation term is J2, which represents the oblateness of the Earth.  The J2 gravitational term is almost 1000 times 
larger than the next largest term, J3.4   
 
The authors have previously written a paper dealing with drag-free control in the context of single LEO spacecraft.5 
That first paper represented part of a study to determine the feasibility of a generic, low-cost drag-free control 
system for spacecraft in LEO.  The current work presents new results from that ongoing study. The first paper 
compared the total orbital velocity changes (∆V) required for two orbital maintenance regimes: drag-free control and 
periodic orbit boosts at up to 4-week intervals. That comparison demonstrated that drag-free control could yield 
significant fuel savings for high-drag missions (i.e. low altitude, low ballistic coefficient). The paper also presented 
trends of drag-free effectiveness based on mission characteristics (e.g. altitude, inclination) that could be used by 
engineers to make judgments in the context of their own professional interest, be that research and development or 
space mission design.  The study made use of a spherical-Earth assumption, so that there were no J2 perturbations, to 
establish clear relationships between the spacecraft orbital characteristics and concomitant drag effects, and the 
usefulness of drag-free control.  
 
The current paper explores the effects of J2 perturbations on drag-free control of a spacecraft in LEO.  As in the first 
paper, a simulated drag-free control system is used to establish comparisons and trends between various LEO, drag-
free scenarios.  Because J2 is a gravitational perturbation and affects both the spacecraft and proof mass, the only 
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difference between the spacecraft and proof mass equations of motion is drag acceleration acting on the spacecraft.  
The drag-free control system should be able to remove the effects of that drag acceleration, leaving only Keplerian 
motion perturbed by the effects of J2.  In particular, this paper attempts to explain any extra ∆V costs associated with 
the inclusion of J2 perturbations in the drag-free control simulation. 
 
SIMULATION 
 
The drag-free controller and test simulation were created using Simulink, and can be separated into four main parts: 
spacecraft orbit, proof mass orbit, gap measurement, and the drag-free controller. 
 
Spacecraft Orbit 
 
The spacecraft in this simulation is assumed to be nadir-pointing and in a low-eccentricity, low-Earth orbit with 
inclination varied between cases.  Initial orbit parameters were calculated for a circular Keplerian orbit, as was done 
in [5].  However, as a result of the presence of an increased and asymmetric potential due to J2 this initialization 
procedure resulted in non-circular orbits.  Once initialized, the spacecraft orbit is propagated in the inertial frame 
using two-body orbit dynamics with atmospheric drag and J2 perturbations.   
 
The atmospheric density values used are the average density values listed in [3], with linear interpolation between 
data points.  Solar radiation pressure is not included because below altitudes of 800 km atmospheric drag is 
dominant;3 this study considers altitudes only up to 700 km.  The total spacecraft acceleration is the sum of the two-
body, drag, J2, and commanded acceleration vectors and is integrated using a fixed-step, fifth-order Runge-Kutta 
solver to obtain the velocity and position of the spacecraft.  Initial position and velocity vectors are calculated from 
simulation-specific initial conditions.  The integration step size is 10 seconds.  The new spacecraft position and 
velocity vectors are then used to calculate the new two-body, drag, and J2 accelerations. The commanded 
acceleration comes from the drag-free controller. 
 
Proof Mass Orbit 
 
In the drag-free control system modeled here, the proof mass is assumed to be a point mass and enclosed within a 
small, cubic cage or box.  However the proof mass itself is not constrained along any axis; the proof mass is allowed 
to float freely within its enclosure.  Because the proof mass is enclosed within the spacecraft, atmospheric drag does 
not affect the proof mass orbit.  The proof mass orbit, therefore, is modeled using only gravitational accelerations, 
namely, two-body orbit dynamics with J2 perturbations.  The total proof mass acceleration is integrated to yield the 
proof mass position and velocity vectors.  As with the spacecraft, initial position and velocity vectors are calculated 
from simulation-specific initial conditions. 
 
Gap Measurement 
 
It is assumed that there exists a sensor (e.g. capacitive or optical) that can measure the gap between the proof mass 
and the sides of its enclosure.  That gap vector is a representation of how far apart the spacecraft and proof mass 
centers of mass are.†  If the proof mass is located at the spacecraft center of mass and the proof mass and spacecraft 
are following exactly the same orbit, the proof mass will be located at the exact center of the box and the gap vector 
will be the target gap vector, which, in this system, is assumed to be [1.0 1.0 1.0]T cm – the center of a 2.0 cm cube. 
 
The gap vector is measured in the spacecraft body frame.  Because the spacecraft is assumed to be nadir pointing, 
the spacecraft body frame will also be the orbit frame.  The gap vector is calculated by first subtracting the proof 
mass position vector from the spacecraft position vector, in the inertial frame.  The position vector difference is then 
converted to the orbit (body) frame.  The position vector difference in the orbit (body) frame must then be converted 
to a gap measurement: 

                                                 
† Note that, though there is in this paper no practical distinction made between a “center of mass” and a “center of 
gravity,” the development of real drag-free sensors and the consideration of certain other perturbative effects would 
require proper attention to any difference between these locations in the spacecraft. 
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where gapm is the measured gap vector, gapt is the target gap vector of [1.0 1.0 1.0]T cm, is the proof mass to 
spacecraft vector in the orbit frame, and r

o
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P0 is the offset of the proof mass cage from the spacecraft center of mass. 
 
Each axis of the vector calculated above is limited to between 0.0 and 2.0 cm because the proof mass is enclosed 
within a 2.0 cm cube.  If the gap were outside of those limits, the proof mass would be outside of the cube.  At this 
point in the proof of concept study, drag-free sensor biases due to mass attraction between the proof mass and 
spacecraft are not included.  As the study progresses, those biases will be introduced along with other error sources. 
 
Drag-Free Controller 
 
The acceleration needed to keep the spacecraft following the proof mass orbit is calculated with the drag-free 
controller using the gap vector components as inputs.  A continuous, Proportional-Integral-Derivative (PID) 
controller is used on the three uncoupled axes of control, and the thrust vector is calculated from the vector sum of 
the three PID outputs.  The PID gain matrices have not been optimized at this point in the study, but they have been 
selected to prevent the proof mass from ever hitting the side of the proof mass cage.  The gains also do not consider 
optimizing the total thrust direction to minimize the ∆V applied. 
 
SIMULATION SCENARIOS 
 
To test the effectiveness of the drag-free controller and the effects of J2 on drag-free controllability, two different 
scenarios were established.  All cases in the scenarios were run for a four-week period.  A summary of the two 
scenarios is shown in Table 1.  In both scenarios, the attitude of the spacecraft is assumed to be nadir pointing and 
perfectly controlled. 
 

Table 1: Summary of initial spacecraft parameters 
for Scenarios 1 & 2. 

Altitude
Varies

350 - 700 
km Varies

350 - 700 
km

Inclination
Varies 0 - 60 

deg
Varies 0 - 60 

deg

Ballistic Coeff.
Varies

25 - 200 
kg/m2

Eccentricity Fixed 0 Fixed 0

RAAN Fixed 0 deg Fixed 0 deg

Arg. of Perigee Fixed 0 deg Fixed 0 deg

True Anomaly Fixed 0 deg Fixed 0 deg

J2 Perturbations

Initia l Spacecraft Parameters

Yes Yes

Scenario 1 Scenario 2

N/A

Scenario 1 
 
Scenario 1 assumes that the center of the proof mass cube is located at the center of mass of the spacecraft and that 
J2 gravitational perturbations are acting on the spacecraft and proof mass.  In addition, atmospheric drag is 
perturbing the spacecraft orbit.  The goal of this scenario is to determine the effectiveness of the drag-free control 
concept with the addition of J2 perturbations.  Since J2 is a gravitational acceleration, it will affect both the 
spacecraft and the proof mass orbits.  The only simulated difference between the spacecraft and proof mass orbits is 
the atmospheric drag acceleration acting on the spacecraft, which is the effect the drag-free controller is attempting 
to remove.  A total of 448 different cases were run for this scenario.   
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Scenario 2 
 
Scenario 2 also assumes that the center of the proof mass cage is located at the center of mass of the spacecraft and 
that J2 gravitational perturbations are acting on the spacecraft and proof mass.  Atmospheric drag, however, is not 
acting on the spacecraft.  This scenario is equivalent to perfect drag compensation with J2 still present.  It serves as a 
point of comparison for Scenario 1.  Ideally, if drag is successfully removed, the orbits in Scenario 1 should closely 
match those of Scenario 2.  A total of 56 cases were run for this scenario.  Because J2 perturbations do not depend on 
CB, that parameter was not varied.   
 
SIMULATION RESULTS 
 
Each case within the two scenarios was run for a total of four weeks of simulated time.  At the end of each 
simulation, the last 24 hours of position and velocity data at each integration time step were saved in files.  Using the 
last 24 hours of a four-week simulation ensures that the controller has settled and the spacecraft orbit has reached its 
steady state.  Between the two scenarios, a total of 504 different cases were tested.  Due to this large amount of 
information, it is difficult to discuss all of the results in detail.  This section, therefore, summarizes the main trends 
in the scenario results and the discoveries to which those trends lead. 
 
Comparison of ∆V Cost of Drag-Free Control: J2 vs. No J2 
 
In the earlier paper, the theoretical fuel cost of drag-free control is established in terms of cumulative ∆V obtained 
by integrating the acceleration from the drag-free controller.5  This ∆V cost assumes no perturbations in the system 
other than drag acceleration acting on the spacecraft, which flies in a Keplerian orbit.  This paper makes some 
comparisons between the ∆V costs of drag-free control for J2 spacecraft and Keplerian spacecraft (no J2; presented 
in [5]). Table 2 presents a sampling of these ∆V costs.  Notice that in all cases, the ∆V cost for the J2 spacecraft is 
larger than for the Keplerian spacecraft; this trend results mainly from the J2 potential causing the J2 spacecraft to 
dip lower in the atmosphere, which increases drag.  This effect is discussed more thoroughly below.   

Table 2:  Comparison of ∆V totals from drag-free control 
simulations with and without J2 perturbations. 

Initial 
Altitude

∆V      
With J2

∆V    
Without J2

∆V      
With J2

∆V    
Without J2

∆V      
With J2

∆V    
Without J2

(km) (m/s) (m/s) (m/s) (m/s) (m/s) (m/s)
350 13.569 10.004 13.117 10.004 12.213 10.004
400 5.066 3.870 4.914 3.870 4.611 3.870
450 2.036 1.596 1.980 1.596 1.869 1.596
500 0.861 0.686 0.839 0.686 0.794 0.686
550 0.380 0.308 0.371 0.308 0.352 0.308
600 0.175 0.144 0.171 0.144 0.163 0.144
650 0.084 0.071 0.083 0.071 0.079 0.071
700 0.043 0.037 0.043 0.037 0.041 0.037

Comparison of ∆V Totals for a SC with CB = 50 kg/m2:                 
J2 (Scenario 1) vs. Keplerian (Fleck & Starin)
Inc = 0 deg Inc = 30 deg Inc = 60 deg

 
 
 Equatorial Orbits 
 
The relatively large increase in ∆V cost for the J2 spacecraft did not intuitively make sense for the spacecraft in the 
equatorial orbit. J2 is a zonal harmonic and as such is symmetric about the polar axis and dependent only on 
latitude.4 A spacecraft in a circular equatorial orbit will not cross any latitude lines, and therefore it should see a 
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constant magnitude acceleration, assuming drag is compensated for and therefore the spacecraft altitude remains 
constant.  Intuitively then, the ∆V cost for a J2 spacecraft in a circular, equatorial orbit might be thought the same as 
the ∆V cost for the same spacecraft, at the same altitude, in a Keplerian orbit.  It can be shown, however, that the 
difference in ∆V cost for the two circular, equatorial spacecraft orbits (Keplerian vs. J2) will not be the same, nor 
will it be as large as what is seen in Table 2.   
 
Consider the method in which the spacecraft initial position and velocity vectors are calculated.  Originally, the 
spacecraft and proof mass initial conditions were defined in terms of apogee and perigee altitude, inclination, right 
ascension of the ascending node, argument of perigee, and true anomaly.  Apogee and perigee were defined to be the 
same (equal to the spacecraft altitude), making the orbit circular.  Initial position and velocity were then calculated 
by converting the classical orbital elements into Cartesian elements, (i.e. inertial position and velocity vectors) using 
methods derived from Kepler’s laws.  The resulting velocity, the Keplerian velocity, is the velocity required to 
maintain a circular Keplerian orbit of a given radius.  This circular orbit may be maintained at any inclination about 
a spherical and uniform central body.  However, when J2 perturbations are present, the central body is neither 
spherical nor of uniform density.  The geopotential function is non-uniform and the spacecraft orbit is therefore 
called non-Keplerian.  With J2 perturbations present, the geopotential is greater about the equator than in the 
spherical case, and the Keplerian velocity is not enough to maintain a circular orbit of a given altitude at the equator.  
The orbit of the spacecraft in Table 2, therefore, is not in a circular orbit at a constant altitude. 
 
To calculate the velocity needed to maintain that circular orbit, the J2 potential must be used to find the centripetal, 
gravitational acceleration.  First we calculate the unit vector, V , associated with the Keplerian velocity vector.  Then 
calculate the Keplerian acceleration, a

ˆ
K, of the spacecraft or proof mass: 

 
ra 3rK

µ
−= ,      (2) 

 
where µ is the Earth’s gravitational constant, r is the spacecraft or proof mass position vector in the inertial frame, 
and r is the magnitude of r.  The additional acceleration caused by J2, aJ2, can then be calculated: 
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where J2 is the zonal coefficient due to the Earth’s oblateness, RE is the average radius of the Earth, and rx, ry, and rz 
are the components of the spacecraft or proof mass position vector in the inertial frame, with principle directions î, ĵ, 
and .k̂ 4  Because the magnitude of aJ2 is constant at the equator, the two acceleration vectors can then be summed to 
determine the total acceleration acting on the spacecraft or proof mass at any point in the orbit.  The total velocity 
magnitude, VJ2, needed to maintain a circular orbit of size r about the equator with J2 perturbations present is then: 
 

raV TJ ⋅=2 ,      (4) 

 
where aT is the magnitude of the total acceleration acting on the spacecraft or proof mass.  The initial spacecraft or 
proof mass velocity vector is then obtained by multiplying VJ2 by the unit vector, V .  The resulting velocity vector, 
along with the position vector used in the above calculations, are the initial conditions that will be propagated in the 
simulation.  Calculating the initial position and velocity vectors for the spacecraft and proof mass in this manner will 
ensure that the drag-free controller can maintain a circular orbit of a given altitude about the equator in the presence 
of J

ˆ

2 perturbations.   
 
It is important to note that the velocity magnitude calculated above will be larger than the velocity needed to 
maintain a Keplerian orbit.  Recall that the equation for drag acceleration is: 
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VaD ˆ
2

1 2V
CB

ρ−= ,     (5) 

 
where aD is the acceleration due to drag, ρ is the atmospheric density, and CB is the ballistic coefficient, which is 
equal to the mass of the spacecraft divided by its drag area.  Atmospheric density is dependent on a spacecraft’s 
position above the Earth, or the magnitude of the instantaneous position vector.  By calculating the initial conditions 
using the above method, the position vector and therefore atmospheric density will be the same for the Keplerian 
and circular-J2 spacecraft.  However, as was mentioned before, the velocity of the circular-J2 spacecraft will actually 
be greater, resulting in a larger atmospheric drag and thus a greater ∆V cost.  The ∆V needed by a drag-free circular-
J2 spacecraft, ∆VJ2, can be estimated given the ∆V cost of a drag-free Keplerian spacecraft, ∆VK, and the Keplerian 
and circular J2 velocities, VK and VJ2, respectively: 
 

K
K

J
J V

V
VV ∆⋅=∆ 2

2
2

2
.     (6) 

 
The ∆V cost is found with a simple ratio because the Keplerian and circular-J2 spacecraft will be at the same altitude 
and thus have the same atmospheric density.  Table 3 shows the predicted ∆V cost of a circular-J2 spacecraft 
compared to that of a Keplerian spacecraft and the Scenario 1-J2 spacecraft.  Figure 1 shows the position magnitude, 
velocity magnitude, and drag acceleration magnitude vs. time for a Keplerian and circular-J2 spacecraft in a 350 km, 
equatorial orbit and the Scenario 1-J2 spacecraft.  As can be seen in Figure 1, the Scenario 1-J2 spacecraft does not 
maintain a circular orbit; it dips further into the atmosphere than does the Keplerian or circular-J2 spacecraft.  
Furthermore, its velocity also oscillates, becoming larger than that of the Keplerian or circular-J2 spacecraft.  This 
oscillation in the instantaneous position and velocity magnitudes explains the larger increase in ∆V cost for the 
Scenario 1-J2 spacecraft. 

Table 3:  Comparison of predicted ∆V totals for drag-
free circular-J2 spacecraft to ∆V totals for drag-free 

Keplerian and Scenario 1- J2 spacecraft. 

Altitude J2 ∆V 
(Scenario 1)

Keplerian ∆V 
(Fleck & Starin)

Predicted J2 
∆V (circular)

(km) (m/s) (m/s) (m/s)
350 13.569 10.004 10.019
400 5.066 3.870 3.875
450 2.036 1.596 1.598
500 0.861 0.686 0.687
550 0.380 0.3076 0.3080
600 0.175 0.1437 0.1439
650 0.084 0.0707 0.0708
700 0.043 0.03706 0.03711

Comparison of ∆V Totals:                    
J2 vs. Keplerian                           

Inc = 0 deg, CB = 50 kg/m2
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Figure 1:  Position magnitude, velocity magnitude, and drag acceleration magnitude vs. time for 
a 50 kg/m2 spacecraft with initial altitude of 350 km at.  Left plot shows the circular-J2 and 

Keplerian spacecraft.  Right plot shows the Scenario 1-J2 spacecraft. 

 
 
 Inclined Orbits 
 
The analysis above shows that it is possible to maintain a circular orbit in the presence of J2 perturbations for an 
equatorial orbit.  The ∆V cost from that circular-J2 case can then be compared to the ∆V cost of the Keplerian case.  
If the spacecraft orbit is inclined, however, it is not possible to maintain a circular orbit in the presence of J2 
perturbations.  An inclined orbit will cross over different latitude lines, which will cause variation in the magnitude 
of the J2 acceleration.  This variation in the J2 acceleration will cause the position and velocity of the spacecraft to 
oscillate about some mean value.  Given the exponential decay in atmospheric density (and thus atmospheric drag) 
with spacecraft altitude, the ∆V cost of the J2 spacecraft should be greater than the ∆V cost of its Keplerian 
counterpart.  This increase in ∆V cost is, in fact, the trend that is seen in Table 2.   
 
Comparison of ∆V Cost of Drag-Free Control at Varying Inclinations 
 
Also of interest from the results of Scenario 1 is the variation in ∆V cost as the orbital inclination increases for a 
given initial altitude.  However, because of the inconsistency in orbital perturbations from one inclination to the 
next—the very inconsistency which would produce interesting comparisons—it is not clear what orbits should be 
compared.  For example, an equatorial orbit may still be circular without any spacecraft guidance required; however, 
any nonzero inclination results in a non-circular orbit that defies accurate description in terms of Keplerian 
coordinates. So, starting both the equatorial and inclined orbits at the same altitude for purposes of comparison, as 
done in this study, produces orbits that experience very different density and velocity profiles over the course of 
even a single orbit.  The drag is proportional to both atmospheric density (strongly influenced by altitude) and the 
square of orbital velocity, and yet both of these vary in every natural, inclined, J2-influenced orbit.  Evaluations of 
drag-free performance at various orbital inclinations were included in [5]. These evaluations led to a conclusion that 
inclination was not a strong influence on drag-free performance in Keplerian orbits. From the results presented here, 
it is clear that inclination plays a more important role when J2 perturbations are present. Because of the spherical 
asymmetry, direct comparisons of an inclined orbit with and without J2 are difficult, and potentially misleading.  
This does not diminish the value of the J2 spacecraft results on their own; for instance, it is possible to make 
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comparisons to find trends due to altitude or other orbital characteristics within the subset of simulated cases at each 
particular inclination.   
 
 
With this knowledge, it becomes clear that any comparison between the results from Scenario 2 and the previous 
work in [5] must be made carefully.  As can be seen in Figures 1 and 2, the initial conditions calculated for each case 
in Scenario 1 ensure that the maximum altitude, and not the mean altitude, of the Scenario 1-J2 spacecraft is the same 
as the Keplerian spacecraft.  A comparison might be made between the ∆V cost of a Keplerian spacecraft at a given 
inclination and altitude and the ∆V cost of a J2 spacecraft at the same inclination, whose mean altitude is the same as 
that of the Keplerian spacecraft. That is, the instantaneous orbits of the two spacecraft would be different, but their 
mean orbit would be the same.  Whether this constitutes an appropriate comparison for any particular mission would 
depend on the answers to mission-specific questions: e.g. the accuracy of initial orbital placement by the launch 
vehicle, tolerance of the spacecraft to altitude variations.   
 

Figure 2:  Position, velocity, and drag acceleration magnitude 
of a 50 kg/m2 Scenario 1-J2 spacecraft with initial (maximum) 

altitude of 350 km and initial inclination of 60°. 
 
Effectiveness of the Drag-Free Controller 
 
To determine the effectiveness of the drag-free controller at removing drag with J2 perturbations present, the last 24 
hours worth of position and velocity vectors from Scenarios 1 and 2 were saved for comparison.  Because it was 
established that Cartesian elements cannot be converted to classical orbital elements with J2 present, all comparisons 
were made directly with the position and velocity vectors.  Since Scenario 2 has no drag acceleration acting on the 
spacecraft, it was used as the baseline.  At any instant in time, the position vector of the Scenario 2 (no drag) 
spacecraft represents where the Scenario 1 (drag) spacecraft is supposed to be.  The velocity vector of the no drag 
spacecraft represents how fast and in what direction the drag spacecraft is supposed to be moving.  Cases in 
Scenario 1 were compared to the corresponding cases in Scenario 2 to determine how well the controller is working 
to keep the drag spacecraft where it is supposed to be and moving as fast as it is supposed to be.   
 
In determining controller effectiveness, the first thing that was done was to determine the overall worst-case errors 
in position and velocity.  These errors are made up of two separate parts:  error in magnitude and error in direction.  
The position and velocity magnitude errors were determined by subtracting the drag spacecraft position or velocity 
vector from that of the no drag spacecraft and taking the magnitude of that error vector.  The position and velocity 
direction errors were determined by finding the angle between the drag and no drag position or velocity vector.  For 
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Table 4:  Overall worst-case errors between the position and 
velocity vectors:  Scenario 1 vs. Scenario 2 

Error Initial 
Altitude

Initial 
Inclination

Ballistic 
Coefficient

(km) (deg) (kg/m2)
Position Magnitude 

(mm)
6.359E-02 350 30 25

Position Angle 
(arcsec)

6.873E-03 350 20 125

Velocity Magnitude 
(mm/s)

8.910E-05 350 0 25

Velocity Angle 
(arcsec)

7.529E-03 700 10 50

Overall Worst-Case Errors from Drag-Free Control Simulation   
with J2 Perturbations

a given case, the magnitude and direction of the errors were determined at each 10-second time step.  The worst-case 
errors for that case would then be the maximum position and velocity errors.  The overall worst-case errors would 
then be the maximum position and velocity errors of all the cases studied.  Those errors and the case from which 
they come are shown in Table 4.  As can be seen, over a four-week time span the drag-free controller does a good 
job of removing drag from the spacecraft.  All of the overall maximum errors except velocity angle occur at the 
lowest initial altitude tested, 350 km.  The maximum errors occur for an initial altitude of 350 km, since drag 
acceleration is greater at lower altitudes. 
 
Of interest also are the instantaneous errors in position and velocity within any given case.  Given the number of 
cases run, it would be impossible to discuss these errors in detail for every case.  Therefore, this discussion will 
focus on the general trends seen in the cases studied.  Figure 3 shows a representative example of the position and 
velocity errors.  These particular errors are for a 100 kg/m2 spacecraft at an initial altitude of 450 km and an initial 
inclination of 30° for the last 12 hours of the 4-week simulation; the 12 hour period is chosen for clarity of the 
figure.  As can be seen in the figure, the position and velocity magnitude errors oscillate fairly regularly with the 
orbit of the spacecraft.  This stable oscillation implies that the controller has reached a steady state limit cycle, and 
the errors should not grow any larger.  The errors in position and velocity angle appear to be related to numerical 
simulation of the 10-second thrust interval, and they are bounded and extremely small.  Again, the fact that these 
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Figure 3:  Position and velocity errors for the last 12 hours of the 4-week simulation.   
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errors are bounded over the last 12 hours of the simulation implies that these errors will not grow as additional time 
goes by.  It is important to reiterate that the simulation does not include any noise at this point.  The fact that the 
errors are bounded does not imply that the controller is robustly stable.  It simply shows, as is the goal of this study, 
that the concept of drag-free control is possible from an ideal standpoint. 
 
Another thing that is interesting to point out in discussing the effectiveness of the drag-free controller is how the 
magnitude errors vary within the orbit of the spacecraft.  Figure 4 shows the position magnitude error plotted vs. the 
X- and Y-components of the no drag spacecraft position vector for the last 24 hours of the case with an initial 
altitude of 450 km, initial inclination of 0°, and spacecraft CB of 100 kg/m2.  In addition, the bold line shows the 
orbit of the no drag spacecraft, i.e. the ideal orbit.  The position magnitude error can be shown in this fashion 
because the orbit is un-inclined, and there is no Z-component of the position vector.  As can be seen in the figure, for 
each orbit the position magnitude error reaches a peak four times and drops to approximately zero between those 
peaks.  The oscillation in the position magnitude error repeats with each orbit, showing again the controller limit 
cycle discussed earlier.   
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Figure 4:  Plot of the position magnitude error as a function of the 
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CONCLUSION 
 
A Simulink simulation was developed to look at the effects of J2 perturbations on a drag-free control system for 
spacecraft in LEO.  Two different scenarios were developed to test the simulation.  Scenario 1 assumes that drag and 
J2 perturbations are acting on the spacecraft, whereas Scenario 2 assumes only J2 perturbations acting on the 
spacecraft, representing “perfect” drag compensation.  A comparison of the results from Scenarios 1 and 2, along 
with results from an earlier study by the authors, led to the following conclusions. 
 
A comparison of Scenarios 1 and 2 shows that the drag-free controller can remove drag from the spacecraft orbit 
with J2 perturbations present.  After four weeks, overall worst-case errors in position and velocity magnitude are 
0.06 mm and 9.0e-5 mm/s, respectively.  In addition, worst-case errors in position and velocity direction are on the 
order of thousandths of an arc second.  The instantaneous errors in position and velocity magnitude show that the 
errors are bounded and oscillate with respect to the spacecraft orbit. 
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The ∆V cost of maintaining a circular, equatorial orbit, with drag-free control, in the presence of J2 perturbations 
will be slightly higher than maintaining the same orbit without J2 perturbations.  The added ∆V cost comes from the 
fact that additional velocity is required to maintain a circular, equatorial orbit with J2 present.  As drag acceleration 
is dependent on velocity squared, that additional velocity translates to additional drag, and therefore additional ∆V 
to counteract that drag.   
 
To compare the ∆V cost of drag-free control for J2-spacecraft to that of Keplerian spacecraft in inclined orbits, care 
must be taken to ensure that the mean J2-spacecraft altitude is the same as the altitude of the Keplerian spacecraft.  
In that case, the ∆V cost of J2-spacecraft will also be greater than the ∆V cost of the Keplerian spacecraft.  This 
increase in ∆V cost is because the J2 spacecraft position will oscillate about the mean altitude, and atmospheric 
density (and thus atmospheric drag) decreases exponentially with instantaneous spacecraft altitude.  Therefore, time 
spent below the mean altitude will provide a greater contribution to the ∆V cost than will time spent above the mean 
altitude, resulting in an overall greater ∆V cost than the Keplerian spacecraft. 
 
The authors were originally interested in comparing drag-free controller performance and ∆V cost across different 
orbital inclinations.  However, because J2 perturbations vary across geocentric latitude, spacecraft at different 
inclinations will experience vastly different position (therefore density) and velocity profiles.  These different orbits 
make it difficult to draw generalized conclusions about the effects of varying inclination on the controller 
performance and ∆V cost.  If, however, the spacecraft orbit were established such that the mean spacecraft altitude 
were the same across all inclinations, the ∆V cost from those cases might then be comparable.  Or, it may be that the 
minimum altitude is the crucial factor for a certain range of eccentricities, or that orbital energy should be equal in 
comparable cases. The answers to these questions lie beyond the scope of this paper; nonetheless, it is important to 
bring this issue forward.  Also, despite this difficulty in making direct case-by-case comparisons, the similarity of 
the trend of the simulated J2 ∆V values with the trend of the Keplerian values indicates that the relative dependence 
of performance on altitude is consistent between the two data sets. 
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